Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups

نویسندگان

چکیده

This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, Heisenberg group $\mathbb{H}^n$, $n\in \mathbb{N}$. For $1\leq k\leq n$, we show that every $L$-Lipschitz graph over a subset $k$-dimensional horizontal subgroup $\mathbb{V}$ $\mathbb{H}^n$ can be extended to an $L'$-Lipschitz entire $\mathbb{V}$, where $L'$ depends only on $L$, $k$, $n$. We further prove $1$-dimensional $1$-Lipschitz graphs \mathbb{N}$, admit corona decompositions by with smaller constants. complements results were known previously first $\mathbb{H}^1$. The main difference this case arises from fact for k<n$, complementary vertical subgroups are not commutative.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic Lipschitz Graphs in Heisenberg Groups

In the last few years there have been a fairly large amount of work dedicated to the study of intrinsic submanifolds of various dimension and codimension inside the Heisenberg groups H or more general Carnot groups. For example intrinsically C surfaces, rectifiable sets, finite perimeter sets, various notions of convex surfaces have been studied. Here and in what follows, intrinsic will denote ...

متن کامل

Smoothness of Lipschitz Minimal Intrinsic Graphs in Heisenberg Groups

We prove that Lipschitz intrinsic graphs in the Heisenberg groups Hn, with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.

متن کامل

Intrinsic Lipschitz Graphs in Heisenberg Groups and Continuous Solutions of a Balance Equation

In this paper we provide a characterization of intrinsic Lipschitz graphs in the subRiemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation φy + [φ/2]t = w, where w is a bounded function.

متن کامل

Smoothness of Lipschitz minimal intrinsic graphs in Heisenberg groups Hn, n > 1

We prove that Lipschitz intrinsic graphs in the Heisenberg groups Hn, with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.

متن کامل

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annali di Matematica Pura ed Applicata

سال: 2021

ISSN: ['1618-1891', '0373-3114']

DOI: https://doi.org/10.1007/s10231-021-01124-3